
Course Experience Report: Full-Class Compiler
Collaboration

Joe Gibbs Politz
University of California San Diego

California, USA
jpolitz@eng.ucsd.edu

Yousef Alhessi
University of California San Diego

California, USA
yalhessi@eng.ucsd.edu

Abstract
Compilers are large software systems. In course projects it is
often a challenge for students to build a significant compiler
on their own with features like memory management, clo-
sures, inheritance, and more. We report on our experience
splitting a relatively large compiler, with several of these
advanced features, among project groups in a graduate com-
pilers course. In addition to allowing students to engage with
a larger system than groups would have been able to build
on their own, we also believe based on anecdotal feedback
that this had positive effects on student morale and com-
munity. There were several concrete logistics and content
decisions we made that were effective, along with other rec-
ommendations and refinements for when we run the course
again.

CCS Concepts: • Software and its engineering → Pro-
gramming teams; Compilers; • Applied computing→
Collaborative learning.

Keywords: compilers, computer science education, collabo-
rative software development, webassembly, typescript
ACM Reference Format:
Joe Gibbs Politz and Yousef Alhessi. 2021. Course Experience Report:
Full-Class Compiler Collaboration. In Proceedings of the 2021 ACM
SIGPLAN International SPLASH-E Symposium (SPLASH-E ’21), Octo-
ber 20, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3484272.3484961

1 Course and Context
We report on an offering of a 10-week graduate compil-
ers course at a large public research university in the US.1
Broadly, the course covers compilers topics like optimiza-
tion, code generation, interactive evaluation, and runtime

1The course web page is available at https://ucsd-cse231-w21.github.io/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH-E ’21, October 20, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9089-7/21/10.
https://doi.org/10.1145/3484272.3484961

systems. Notably, it is a “backend” compilers course not fo-
cused on lexing or parsing. The course recommends, but
does not require, undergraduate-level compilers background.
The primary new aspect we report on is a large, class-wide
project collaborating on a single compiler. This is similar to
efforts in software engineering courses [2, 11]; to our knowl-
edge this is the first published report on a project like this
specifically in a compilers course.
In the offering of the course we report on, 57 students

enrolled and 48 completed it. 2 The lead instructor had not
taught the course before, while the graduate co-instructor
had, but in a different style than we report on here. We
mention this to highlight that this was the first offering of
this particular design.

1.1 Course Structure and Schedule
The 10 weeks of the course were roughly split into a 6-
week introduction to compilers, and a 4-week mix of project
work and further material. Lectures were a mix of breakout
rooms, whiteboarding, and live coding. Asynchronous, on-
line quizzes were given roughly weekly to give students a
frequent understanding checks and feedback mechanism.
Table ?? outlines our intended outcomes for students in

the course, when the assignments and lecture/reading topics
were assigned, and which outcomes were highlighted each
week. PROG was supported every week in the course so we
don’t write it explicitly. PARSE, CODE, REPR, and TYPEwere
also supported by the vast majority of project work so we
don’t necessarily repeat them, though we think the practice
with those topics was valuable even in weeks where we
weren’t introducing new concepts related to those outcomes.

The first four assignments were not part of the large course
project, and focused on implementing incrementally increas-
ing subsets of ChocoPy in the style of Ghuloum [3] and
as recommended by Karlsson [7].3 Following these assign-
ments, students completed a group project contributing to a
central compiler that started roughly where the individual
assignments left off, which we detail in section 2. Students
had a final individual oral assessment to test their overall
understanding.
2The institution has a practice of “shopping” courses for the first week or
two.
3Though we note that, in slight contrast to Karlsson’s recommendations
that the language used for examples “should be similar to ChocoPy but
smaller”, we believe we were able to stick to strict subsets of ChocoPy.

https://doi.org/10.1145/3484272.3484961
https://ucsd-cse231-w21.github.io/
https://doi.org/10.1145/3484272.3484961


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Joe Gibbs Politz and Yousef Alhessi

Table 1. Course Outcomes and Calendar

Abbrev Description
PARSE Connect an off-the-shelf parsing library and grammar to code generation
PROG Program in recursive-descent style Typescript and programmatically generate WASM code
OPT Describe and identify (though not necessarily implement) control-flow optimizations and lowering

surface syntax to an intermediate representation
CLOS Describe and identify strategies for implementing closures
REPR Design and implement the representation of a new type of value in an existing compiler
CODE Design and implement code generation for primitive values, heap-allocated records (e.g. classes with

no inheritance), and first-order functions
TYPE Design and implement type checking rules to add a feature to an existing compiler
DYN Design and implement code generation for dynamic code loading (e.g. for a REPL or JIT)
SPEC Read and implement a language specified by a grammar and inference rules
ADD Identify and resolve likely interactions between new features added to a compiler
PROJ Work on a group project that can be made public and linked from a resume

Week Reading and Lecture Topics Assignment Outcomes
1 Parser generators, Typescript, WASM, Codegen Basic Compiler PARSE, CODE
2 REPLs, WASM Memory, Functions, Datatypes Basic Compiler DYN, CODE, SPEC, REPR
3 Static Types and Type Checking Funcs & Types Compiler TYPE, SPEC
4 Classes and objects, dynamic heap allocation Funcs & Types Compiler TYPE, CODE, DYN
5 Inheritance, nested functions, function inlining Code Review CLOS, REPR, TYPE, ADD
6 Closures, nested functions Classes Compiler CLOS, REPR, ADD
7 SSA, Liveness Project Preferences OPT, CODE, PROJ
8 Intermediate representations Project Design + Start OPT, CODE, PROJ, ADD
9 Control-flow optimizations / Mob Programming Project Milestones OPT, PROJ, ADD
10 Data flow graphs /Mob Programming Final Code Deadline OPT, PROJ, ADD

1.2 Tools and Technologies
Chocopy. We used ChocoPy, a pedagogic, statically-typed

subset of Python [9], as our compiler’s source language.
Python is familiar to our students and there are off-the-shelf
tools are available for Python’s syntax [5, 6]. It has an in-
dependent specification and black-box implementation
that serve as a source of truth for students when working
on their own compilers. In retrospect, we are satisfied with
our decision and praise ChocoPy’s design.

AWeb-based Implementation. We chose to make our
implementation run within Web browsers to satisfy two
goals: we wanted the language to be interactive (with a visual
REPL) and allow student demos to be releasable, compelling,
and accessible. To this end, we chose WASM [4] as a target
language and TypeScript [8] as an implementation language.
WASM is a burgeoning technology, with large existing efforts
to develop backends that target it [1, 10].

2 Course Project
For the last four weeks, students worked on course projects.
The project was intended to give students the experience of
implementing a meaningful feature of a large compiler. The
goal was to have the whole class collaborating on different

features of one publicly available compiler, which started
with the instructors’ reference compiler. Table ?? gives an
overview of the project topics, and some of their outcomes
and interactions that we detail further in section 2.1.

We suggested the projects and matched students to them
based on their preferences. The students formed 17 teams
(each 2-3 students), with 15 opting to contribute to the pub-
lic compiler.4 The project took 4 weeks and consisted of
4 steps, first choosing preferences and teams, followed by
two intermediate week-long milestones, then a final submis-
sion (table ??). At the end of each milestone, students would
write and submit a progress report as a Github pull request.
The progress report included both passing and pending tests,
code updates for their implementation, overall progress since
the last milestone, and steps to be accomplished at the next
milestone. Then, in the final week of the course each team
submitted a final version of their feature.

2.1 Managing Conflicts
A large, collaborative project involves managing conflicts
between groups submitting to the same central repository.
We had two main strategies for managing conflicts: mob

4The two groups with Merged as N/A didn’t want to manage cross-project
collaboration or wanted to work independently.



Course Experience Report: Full-Class Compiler Collaboration SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Table 2. Course project topics, whether they merged by the end of the quarter, and key cross-project conflicts

Feature Merged Key Conflicts
Memory Management [MM] All All but Errors/NArgs/Testing
Lists All MM/Strings/Comp/Destruct/Iter
Bignums All MM/Lists/Strings/Dicts
For loops/iterators [Iter] Partial Strings/Lists/Comp/Destruct
Destructuring Assignment [Destruct] All Lists/Strings/Iter/Comp
Strings All MM/Dicts/Iter/Bignums
List Comprehensions [Comp] Partial Lists/Iter/Destruct
Built-in libraries (NumPy) None MM/Lists/Bignums
Dictionaries [Dicts] All MM/Strings/Bignums
Closures All MM/NArgs
Named Arguments [NArgs] All Closures/Types
Type Inference [Types] None Errors/NArgs
Web UI/UX All Errors/MM
Error reporting [Errors] All UX/Types
Testing All None
Strings N/A N/A
Inheritance N/A N/A

programming, where the instructors led the class in several
merges, discussing design tradeoffs and taking suggestions
from students, and asynchronous iteration, where one
project would merge and other groups would update their
pull request to match. Occasionally the instructors did ad-
ditional cleanup or harmonization, and students did some
ad hoc organization on Slack, but these two strategies ac-
counted for most merges. Here we detail some anecdotes of
notable conflict resolutions.

Memory Management. WASM provides an unmanaged
linear memory for use as a heap. The memory management
team took on the challenge of building an allocator and col-
lection scheme with an API for other groups to use. This
meant that at the milestones, memory management had to
be merged either first or last. First, and each other group
could make small changes to adapt to the new API, or last,
so the memory management team could update all the other
groups’ code generation before its merge. This was mostly
managed through asynchronous iteration, where themem-
ory management group took on much of the burden. We
wished partway through that this group’s API could have
been represented as specialized allocation expressions in an
intermediate representation (IR), but moving all groups to
use an IR was infeasible mid-project.

Strings and Memory Management. The group working
on strings changed object initialization to make space for
string literals as initial field values. This could complicate
how the heap head pointer for allocation was tracked. To-
gether, we derived the idea duringmob programming of
using interned strings to avoid this issue.

Indexing Expressions. Several groups added the Python
expression expr[key] in separate branches, and we had to
pick a single general representation that would work for all
of them (including the case where key was a slice,5 which
wasn’t considered by all groups). Here we decided on the
approach as a mob, and then groups managed the asyn-
chronous iteration after the meeting.

Lesson (Mob Programming). The idea for these sessions
came up organically, so we didn’t decide on the order of re-
viewing andmerging pull requests beforehand. In some cases,
we called on students in the relevant group to briefly assume
the role of instructor to explain their approach. We were
excited with the level of engagement students had in these
sessions. Next time, we would identify and notify groups
ahead of time so they could prepare to attend, present, and
discuss their code. In addition, with enough such sessions,
we could assign each group this role at some point, creat-
ing another opportunity for formative assessment for each
group.

2.2 Project Outcomes
Ultimately, the resulting compiler (figure 3) represented ex-
cellent effort and programming work by students. The final
compiler had some issues. Some of these issues were design
flaws that weren’t caught early enough. Others were incom-
patible feature interactions that were too time consuming
to reconcile. Others were simply a lack of thoroughness and
robustness in testing and implementation of a feature.
Some fundamental features suffered from poor ordering

of feature implementation by the instructors. For example,
5https://docs.python.org/3/tutorial/introduction.html#lists

https://docs.python.org/3/tutorial/introduction.html#lists


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Joe Gibbs Politz and Yousef Alhessi

Figure 1. A screenshot of the compiler highlighting destructuring assignment, bignums, function calls, and nicely-rendered
static error messages. All of the demonstration expressions on the right are part of the functioning REPL. The source is
available at https://github.com/ucsd-cse231-w21/chocopy-wasm-compiler.

for loops in Python are designed to work over many differ-
ent sequence structures through a shared iterator interface.
However, when the loops group started their work neither
iterators nor lists nor strings were implemented, so the group
hacked a custom iterator value to work as range.6 Mean-
while, the lists and strings groups were dealing with issues
of memory management and representation, so a good, cen-
tralized iterator interface didn’t materialize. As a result, for
loops only work on numeric ranges in the final compiler.
List comprehensions had a similar category of issues. De-
structuring assignment nearly suffered the same fate (there
were no values to destructure when they started), but that
group managed to hardcode enough cases for the different
data structures to have eventual success.

The closures group implemented new passes over the AST
to check for free variables and implement closure creation.
However, new AST forms added by other groups were not
introduced into all contexts in testing. As a result, new ex-
pressions weren’t handled in this new AST pass, causing
surprising failures for basic features when they appeared
within function bodies rather than at the top level, which
was the default way to write a test. The relevant groups
didn’t have time to find and fix all of these issues.
The groups working on types and type inference, and

on connecting our compiler to native libraries like NumPy,

6With the blessing of the instructors, who perhaps realized their mistake
too late.

made useful progress. However, these projects required fun-
damental changes to the compiler’s data structures that were
too time consuming to reconcile with each other and the
base compiler.

Lessons. We take several lessons from this. First, some
features, like the iterator interface, are so central that the
instructors may need to declare them by fiat (as they declared
that the compiler would have a separate type checker, and
that booleans would have a particular representation, and
so on). Second, this experience was an important reminder
of teaching and emphasizing integration testing. While tests
were written for each feature, there was not enough focus
on keeping up with testing feature interactions. As a result,
no one was responsible for making sure new expressions
worked in all contexts or with one another.

Of course, the fact that the compiler overall was brittle
doesn’t mean nothing worked at all. The resulting compiler
is a memory-managed language with classes, built-in data
structures, and higher order functions that runs interactively
in a web browser! And of course, the weaknesses don’t nec-
essarily detract from the learning experience of contributing
to it and seeing various successes and failures of integration.
Indeed, the fact that a feature can fail to work is a part of
the learning experience as well. So as a vehicle for learning
outcomes about the structure of a compiler and how to con-
tribute to one, we found the project effective enough to want
to use it again.

https://github.com/ucsd-cse231-w21/chocopy-wasm-compiler


Course Experience Report: Full-Class Compiler Collaboration SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

3 Assessment
Group projects naturally introduce a tension in assessment
of individual students versus the group. Since our course
(a) required giving grades and (b) fulfills a requirement for
students’ degree, we were obligated to have a concrete indi-
vidual assessment for the group projects.

To accomplish this, after the final submissions of group
projects, we gave each individual student a follow-up design
extension directly related to their project. Their individual
assignment was to complete a design document describing
how they would approach implementing the extension, and
hold a 1-on-1 interview (a kind of oral exam) with us so we
could ask clarifying questions.
Sample extensions included: for a student in the group

implementing arbitrary-precision integers, how they would
add floats to the language; for a student in the group working
on lists, how they would implement assignment to slices
on lists; for a student working on strings, how they would
implement the format function, and so on. Each of these was
either explicitly, or related to, something they mentioned as
un-implemented in their final project submission. The exact
prompts we gave to students are in Appendix A.
In order to reduce our workload (48 interviews is a sub-

stantial time investment), we reviewed the documents ahead
of time for cases where (a) we could easily tell that the style
and writing in the reports of different group members dif-
fered significantly and (b) there were no problematic open
questions that we wanted clarification on. As a result, we
notified over half of the students that their oral exams were
optional and they’d earned a full score already.
The reports and interviews were a valuable assessment

and did find some misconceptions. For example, some stu-
dents at the end of the class still made first-order vs. first-class
mistakes, describing functionality that would only work on
e.g. indices given as literal integers in the source rather than
expressions that could evaluate to integers. Another category
of mistake was not knowing how to decompose a feature
across its static and dynamic behavior. These led to produc-
tive conversations, and in several cases, we gave students a
chance to follow up with a fix after we pointed out an issue
to complete their assessment.

4 Feedback and Lessons Learned
4.1 Anecdotal Feedback
We had several pieces of anecdotal feedback7 from students.
Several students remarked in a post course survey that they
had a really strong bonding experience in their groups (and
noted that this was a special experience during remote in-
struction due to the pandemic). Another student remarked
that WASM came up in a job interview they had during the
7While we have direct quotes and a post-course survey, we report on stu-
dents’ experience in generalities, as we did not collect data about their
experience with a formal resarch study or consent to reshare in mind.

course and their experience helped them discuss it. By far
the large amount of work was the most common negative
feedback we received, which we struggled to calibrate due to
varying backgrounds among the class and our enthusiasm for
tackling an ambitious project. These obervations are similar
to those made by Coppit in post-course surveys in a software
engineering course with 30-person team projects [2].

4.2 The Next Iteration
We present our lessons learned by describing the course as
we plan to teach it in the next iteration.

First, in a 10-week schedule, we want to devote at least 6
full weeks to the project.8 While some amount of individual
learning is necessary, we are eager to see what groups can ac-
complish with more time. Based on our experience with mob
programming and identifying key concepts through merg-
ing student work, we believe that many learning outcomes
can be served through the project model without relying on
individual assignments. The early part of the course would
involve more live programming and explanation of the in-
frastructure for the project, quickly developing into student
groups making contributions, rather than expecting them to
each write their own version of the starter compiler.
With more project time comes the ability to introduce

more structured development. As described in section 2.1, we
struggled whenmultiple groups hadmade different decisions
in altering interfaces, but also when they felt constrained to
existing ones. To alleviate this, we would structure project
work with alternating implementation and design weeks. In
implementation weeks, certain cross-component types and
interfaces would be fixed, with students only able to imple-
ment within provided interfaces, while generating wish-lists
for new or changed interfaces. Then design weeks would
be focused on reconciling interface changes and pushing
through the rote refactorings required to propagate them
across projects. Further, design weeks would provide an op-
portunity for students to review code from other groups and
give feedback.
Our class had 48 students, most of whom participated

in the large project. This was a relatively small class size
compared to typical offerings of the course, which can reach
as high as 150. We are unsure if trying multiple large projects
each at the 30-50 student scale will be best, since integrating
the work of 150 people is a qualitatively different challenge
than doing it for 48.
We were satisfied with, and won’t substantially change,

our assessment strategy, the distribution of the project topics,
the way students engaged in mob programming and project
development, our choice of technologies, and the use of
ChocoPy.

8We liked the first 5-6 weeks of individual project work our course; at
institutions with longer semesters we might leave the first part intact, but
in 10 weeks we need to shorten it.



SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Joe Gibbs Politz and Yousef Alhessi

A Assessment Topics
In table ??, we list the brief assignment descriptions we gave
to students, categorized by their group, for their final assess-
ment.

Table 3. Final Individual Assessments

Assignment Task
Bignums Describe how you could include floats

in the representation of numbers
Bignums Describe how you would make bignums

work as arguments to range
Bignums Describe how dictionary lookup would

work with bignum keys
Built-in libraries Describe how youwould add the plus op-

eration on constant numbers and ndar-
rays

Built-in Libraries Describe how you would make cross-file
constructors work

Closures Describe how you would avoid
reference-wrapping variables unneces-
sarily

Closures Describe how you would implement
printing a closure’s scope in the REPL
– e.g. printing the closed-over variables

Closures Describe how you would implement
functions nested within methods in a
class body

List Comprehensions Describe how you would implement dic-
tionary comprehensions

List Comprehensions Describe how you would implement de-
structuring binding in comprehensions

List Comprehensions Describe how you would implement
parentheses-comprehensions that create
generators

Destructuring Assignment Describe how you would implement the
tuple spread operator on destructuring
tuple assignment

Destructuring Assignment Describe how you would implement
chained assignment with destructuring

Destructuring Assignment Describe how you would implement slic-
ing assignments to lists

Error reporting Describe how to report index errors on
string lookup

Error reporting Describe how to report errors when call-
ing the None value in function position

Error reporting Describe how to report recursion errors
without an explicit bound in pushStack

Named arguments Describe how you would handle passing
a function with default args as a param-
eter

Named arguments Describe how you would handle default
arguments that are general expressions

Named arguments Describe how you would handle key-
word arguments

For loops/iterators Describe how you would handle general
expressions as the iterable in a for loop

For loops/iterators Describe how you would handle iterat-
ing over strings

For loops/iterators Describe how you would handle iterat-
ing over dictionaries

Web UI/UX Describe how you would implement
pretty printing of dictionaries

Assignment Task
Web UI/UX Describe how you would implement

pretty printing of objects
Web UI/UX Describe how you would implement

printing the type of a value along with
its contents at the REPL

Type Inference Describe how you might infer the type
of variables initialized to list expressions

Type Inference Describe how you might infer the type
of variables initialized to dictionary ex-
pressions

Type Inference Describe how you might infer the type
of bracket-lookup expressions

Inheritance Describe how youwould find the correct
field to update with multiple inheritance

Inheritance Describe how you would find the right
method to call with multiple inheritance

Inheritance Describe how you would implement su-
per method calls with multiple inheri-
tance

Lists Describe how you would implement the
list constructor function

Lists Describe how you would implement slic-
ing assignment to lists

Memory Management Describe the API you wish WASM ex-
posed for your garbage collector and
how you would use it

Memory Management Describe one strategy you could use
to reduce fragmentation or effectively
reuse fragmented space

Memory Management Describe one way to change codeGen
or the collector to safely make some ob-
jects’ lifetimes shorter

Dictionaries Describe how you would implement the
dictionary constructor with an iterable
as an argument

Dictionaries Describe how you would implement the
items() method

Dictionaries Describe how lookup works with string
keys

Dictionaries Describe how dictionary lookup would
work with bignum keys

Strings Describe how you would convert lists to
strings with the str function

Strings Describe how you would pack charac-
ters so that there isn’t a separate 4-byte
word per character

Strings Describe how you would convert strings
to lists with the list function

Strings Describe how you would implement for-
mat strings.

Testing Describe how you would extend your
fuzzer to generate the literal zero with
different frequency as a denominator

Testing Describe how you would extend your
fuzzer to generate terminating loops



Course Experience Report: Full-Class Compiler Collaboration SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

References
[1] Emscripten Contributors. 2015. Building to WebAssembly. Accessed

July 15, 2021. https://emscripten.org/docs/compiling/WebAssembly.
html

[2] David Coppit. 2006. Implementing large projects in software engineer-
ing courses. Computer Science Education 16, 1 (2006), 53–73.

[3] Abdulaziz Ghuloum. 2006. An Incremental Approach to Compiler
Construction. In Scheme and Functional Programming.

[4] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the Web up to Speed with WebAssembly. In
PLDI.

[5] Marijn Haverbeke. 2021. lezer-python. https://github.com/lezer-
parser/python/. Accessed 13 July 2021.

[6] Marijn Haverbeke. 2021. The Lezer Parser System. https://lezer.
codemirror.net/. Accessed 13 July 2021.

[7] Tobias Karlsson. 2021. ChocoPy compiler. Course paper, ac-
cessed July 15, 2021. https://fileadmin.cs.lth.se/cs/Education/edan70/
CompilerProjects/2020/Reports/Karlsson.pdf

[8] Microsoft. 2021. TypeScript. Accessed July 15, 2021. https://www.
typescriptlang.org/

[9] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy: A
Programming Language for Compilers Courses. In SPLASH-E.

[10] The Rust and WebAssembly Working Group. 2021. Rust and We-
bAssembly. Accessed July 15, 2021. https://rustwasm.github.io/docs/
book/

[11] Paul E Young and Donald M Needham. 2013. Using a class-wide,
semester-long project to teach software engineering principles. GSTF
Journal on Computing (JoC) 3, 3 (2013), 1–18.

https://emscripten.org/docs/compiling/WebAssembly.html
https://emscripten.org/docs/compiling/WebAssembly.html
https://github.com/lezer-parser/python/
https://github.com/lezer-parser/python/
https://lezer.codemirror.net/
https://lezer.codemirror.net/
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2020/Reports/Karlsson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2020/Reports/Karlsson.pdf
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://rustwasm.github.io/docs/book/
https://rustwasm.github.io/docs/book/

	Abstract
	1 Course and Context
	1.1 Course Structure and Schedule
	1.2 Tools and Technologies

	2 Course Project
	2.1 Managing Conflicts
	2.2 Project Outcomes

	3 Assessment
	4 Feedback and Lessons Learned
	4.1 Anecdotal Feedback
	4.2 The Next Iteration

	References
	A Assessment Topics

